4-3 Videos Guide

4-3a

Theorems (statement and proof):

- The Fundamental Theorem of Calculus, Part 1: If f is continuous on $[a, b]$, then the function $g(x)=\int_{a}^{x} f(t) d t, a \leq x \leq b$ is continuous on $[a, b]$, and $g^{\prime}(x)=f(x)$. That is, $\frac{d}{d x}\left[\int_{a}^{x} f(t) d t\right]=f(x)$ (differentiation is the inverse of integration).

4-3b

- The Fundamental Theorem of Calculus, Part 2: If f is continuous on $[a, b]$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$, where F is any antiderivative of f [that is, $\left.F^{\prime}(x)=f(x)\right]$.

Exercises:

4-3c

- Let $g(x)=\int_{0}^{x} f(t) d t$, where f is the function whose graph is shown.
(a) Evaluate $g(x)$ for $x=0,1,2,3,4,5$, and 6.
(b) Estimate $g(7)$.
(c) Where does g have a maximum value? Where does it have a minimum value?
(d) Sketch a rough graph of g.

4-3d

- Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function.
- $h(u)=\int_{0}^{u} \frac{\sqrt{t}}{t+1} d t$
- $h(x)=\int_{1}^{\sqrt{x}} \frac{z^{2}}{z^{4}+1} d z$

Note: The Chain Rule applies to the derivative, as appropriate:
$\frac{d}{d x}\left[\int_{a}^{u(x)} f(t) d t\right]=f(u(x)) u^{\prime}(x)$

4-3d

- Evaluate the integral.
- $\int_{0}^{1}\left(1-8 v^{3}+16 v^{7}\right) d v$
- $\int_{0}^{4}(4-t) \sqrt{t} d t$
- $\int_{\pi / 4}^{\pi / 3} \csc ^{2} \theta d \theta$

